Abstract

This modeling study focused on the hydrological and water quality effects of controlled drainage (CD) when operated using a subsurface drainage system in an agricultural field in the Wielkopolska region. The DRAINMOD hydrologic model was well calibrated and validated in an experimental field. This model was used in the performance of CD and free drainage (FD) combinations (108 and 27, respectively) in a near-future climate change scenario. The objective was to understand the potential of CD on the groundwater table (GWT), drainage outflow, surface runoff, and nitrogen and phosphorus reduction under projected climate conditions in Poland during the 21st century with shared socioeconomic pathway SSP370. The results indicated that the earliest start of CD practice is the most effective in increasing GWT. Compared to current climatic conditions, when applying CD on 1 March in the near future, with an initial GWT of 60 and 80 cm b.s.l. in wet years, drainage outflows will increase by 33% and 80% for the GFDL model, by 30% and 40% for the MPI model, and by 17% and 23% for the UKESM model. Comparing the surface runoff values obtained to current climate conditions, the MPI, GFDL, and UKESM models predict a significant increase in surface runoff in the near future, which is due to the predicted increase in precipitation. The annual NO3–N reduction was by 22, 19, and 15 kg per hectare for wet, normal, and dry years, respectively, in the near future. Among the climate scenarios, the UKESM model predicted higher NO3–N and PO4 leaching values compared to the MPI and GFDL models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call