Abstract

The interaction of double wall carbon nanotubes (DWCNTs) and the conducting polymer poly(3,4-ethylenedioxythiphene)/polystyrenesulfonate (PEDOT/PSS) was studied by in-situ Raman spectroelectrochemistry. The mixing of DWCNTs with PEDOT/PSS caused a partial doping of the outer tube of DWCNTs, which was indicated by the relative change of the Raman intensity of the DWCNTs features. On the other hand, the bands corresponding to inner tubes of DWCNTs and to the polymer were almost untouched by assembling both species into a composite. The in-situ Raman spectroelectrochemical experiments have shown that the changes in electronic structure of inner tubes of DWCNTs embedded in PEDOT/PSS matrix are dependent on the doping level. While at the low doping level of the composite, the Raman features of inner tubes of DWCNTs do not change significantly, at high doping level they reflect the changes caused by the applied electrochemical potential similar to those observed in the polymer-free DWCNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call