Abstract
This study aims to evaluate the effectiveness of a layer-by-layer (LbL) technique for delivering ketoconazole to prevent fungi prosthetic joint infection (PJI) LbL assembly is a versatile technique for functionalizing biomaterial surfaces and engineering objects such as capsules and films through electrostatic attraction. This method involves the cyclic deposition of various materials onto substrates, allowing for the controlled growth of thin films. One of the key advantages of LbL assembly is its ability to create stable, nanoscale films with organized structures and customizable compositions on a range of substrates, which only need to carry electrostatic charges. Furthermore, the scalability and ease of fabrication of LbL coatings are significant advantages. For example, the deposition of drugs using LbL allows for a prolonged release of these drugs. In the in vivo study, ketoconazole release continued for 60 days, while in vitro release persisted for over 20 days. Moreover, 14 days after surgery, the study group showed a quicker reduction in inflammation and experienced fewer complications The evidence indicates that the LbL coating method positively affects cell viability, suggesting the potential for enhanced patient outcomes and significantly improving prophylactic strategies against fungal PJIs in joint replacement surgeries by preventing and treating fungal infections in prosthetic joints. Future research should explore the use of various antifungal agents to evaluate this approach further.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have