Abstract

While controlled free-radical polymerizations are established for a vast range of vinyl monomers, they have not been reported for carbon monoxide, although it is a unique monomer that forms in-chain keto groups which can promote, for example, desirable photo-degradability in polyethylenes. We report organometallic-mediated radical copolymerization of carbon monoxide with ethylene initiated by an organocobaltIII compound to keto-modified polyethylenes with up to 15 mol % ketone repeat units. Terpolymerization with 2-methylene-1,3-dioxepane affords polyethylenes with in-chain ester and keto groups. Compared to ethylene homopolymerization, the controlled character of the copolymerization is strongly enhanced by the Lewis base function of carbon monoxide, which suppresses multiple unfavorable termination pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.