Abstract

Adipose-derived stem cells (ADSCs) are promising for cartilage repair due to their easy accessibility and chondrogenic potential. Although chondrogenesis of transforming growth factor-β (TGF-β) mediated mesenchymal stem cells (MSCs) is well established in vitro, clinical tissue engineering requires effective and controlled delivery of TGF-β in vivo. In this work, a self-assembled peptide scaffold was employed to construct cartilages in vivo through the chondrogenesis from ADSCs controlled by recombinant fusion protein LAP-MMP-mTGF-β3 that was transfected by lentiviral vectors. During this course, the addition of matrix metalloproteinases (MMPs) can trigger the release of mTGF-β3 from the recombinant fusion protein of LAP-MMP-mTGF-β3 in the combined scaffolds, thus stimulating the differentiation of ADSCs into chondrogenesis. The specific expression of cartilage genes was analyzed by real-time polymerase chain reaction and Western blot. The expression of chondrocytic markers was obviously upregulated to a higher level compared to the one by commonly used TGF-β3 alone. After 3weeks of in vitro culturing, the hybrids with differentiated chondrogenesis were then injected subcutaneously into nude mice and retrieved after 4weeks of culturing in vivo. Histological analysis also confirmed that the recombinant fusion protein was more effective for the formation of cartilage matrix than the cases either with TGF-β3 alone or without LAP-MMP-mTGF-β3 (P<0.05). This study demonstrates that controlled local delivery of the LAP-MMP-mTGF-β3 constructs can accelerate differentiation of ADSCs into the cartilage in vivo, which indicates the great potential of this hybrid in rapid therapy of osteoarthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.