Abstract

Nanostructured hybrid organic-inorganic perovskites exhibit remarkable photodetection performance due to their abundant surface states and high responsivity to visible light. However, in traditional photodetectors with a symmetrical configuration of two-terminal electrodes, the photoresponse is independent of bias polarity. Moreover, for self-powered photodetectors, an asymmetric structure of the chemical composition, such as p-n and Schottky junctions, and two different electrodes are necessary. Herein, we demonstrate a modulable asymmetrical photoresponse by packing only one electrode end in a single CH3NH3PbI3 micro/nanowire with two symmetrical Ag electrodes. This not only enables the high performance of light- and bias-modulated multifunctional photorectifiers and self-powered photodetectors, but also allows controllable implementation of nonvolatile photomemory with a tunable spectral responsivity and range. At an unpacked electrode interface, trace moisture in the environment promotes a good bonding of Ag+ and I-, substantially decreasing the interface barrier. Conversely, at a packed electrode interface, abundant surface states can be well preserved, leading to a high interface barrier. Notably, under a large voltage and strong light, the redox of Ag/AgI at the unpacked electrode interface and the injection and ejection of holes at the packed electrode interface can be reversibly conducted by inverting the voltage polarity, enabling a controllable nonvolatile modulation. Therefore, by clarifying the actual origin of the photoelectrical response of CH3NH3PbI3 micro/nanowires at electrode interfaces, high-performance multifunctional photorectifiers and self-powered photodetectors based on asymmetrical interface photovoltaic effects with two symmetrical electrodes can be controllably realized. Furthermore, by precise cooperative modulation of two electrode interface states with a large voltage and strong illumination, nonvolatile photomemory with a tunable spectral responsivity and range can be implemented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.