Abstract

We investigate the valley and spin-resolved transport through a ferromagnetic/ferromagnetic/ferromagnetic silicene junction. For the normal silicene junction with zero exchange field in the presence of photo-irradiation, we observe a 100% valley/spin polarization by modulating the energy E. By enhancing the strength of the photo-irradiation or the gate voltage in the middle layer VM, a 100% spin and large valley polarization can be found. If the staggered exchange field is considered instead of the photo-irradiation, by tuning E a fully polarized valley/spin transport is demonstrated. By tuning the staggered exchange field or VM, a 100% valley and large spin polarization can be seen. In the ferromagnetic/normal/ferromagnetic junction, depending on the polarized direction of the circularly polarized light, a large negative or positive magnetoresistance can be obtained. The results obtained here can be explained by the band structures of the device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call