Abstract

The morphology evolution by thermal annealing induced dewetting of gold (Au) thin films on silicon (Si) substrates with a native oxide layer and its dependences on annealing temperature and atmosphere are investigated. Both dewetting degree of thin film and Au/Si interdiffusion extent are enhanced with the annealing temperature. Au/Si interdiffusion can be observed beyond 800 °C and Au–Si droplets form in both argon and oxygen (Ar + O2) and argon and hydrogen (Ar + H2) environments. In Ar + O2 case, the passive oxidation (Si + O2 → SiO2) of diffused Si happens and thick silicon oxide (SiOx) covering layers are formed. A high temperature of 1050 °C can even activate the outward growth of free-standing SiOx nanowires from droplets. Similarly, annealing at 800 °C under Ar + H2 situation also enables the slight Si passive oxidation, resulting in the formation of stripe-like SiOx areas. However, higher temperatures of 950–1050 °C in Ar + H2 environment initiate both the SiOx decomposition and the Si active oxidation (2Si + O2 → 2SiO(g)), and the formation of solid SiOx is absent, leading to the only formation of isolated Au–Si droplets at elevated temperatures and droplets evolve to particles presenting two contrasts due to the Au/Si phase separation upon cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call