Abstract

High-κ materials that exhibit large permittivity and band gaps are needed as gate dielectrics to enhance capacitance and prevent leakage current in downsized technology nodes. Among these, monoclinic ZrO2 (m-ZrO2 ) shows good potential because of its inertness and high-κ with respect to SiO2 , but a method to produce ultrathin single crystal is lacking. Here, the controllable preparation of ultrathin m-ZrO2 single crystals via the in situ thermal oxidation of ZrS2 is achieved. As-grown m-ZrO2 presents an equivalent oxide thickness of ≈0.29nm, a high dielectric constant of ≈19, and a breakdown voltage (EBD ) of ≈7.22 MV cm-1 . MoS2 field effect transistor (FET) by using m-ZrO2 as a dielectric layer shows comparable mobility to that using SiO2 dielectric. The ultraclean interface of m-ZrO2 /MoS2 and high crystalline quality of m-ZrO2 lead to negligible hysteresis in transfer curves. Single crystal m-ZrO2 dielectric shows potential application in digital complementary metal oxidesemiconductor (CMOS) logic FET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call