Abstract

The paper provides a novel approach for controllably meshing traditional medium-voltage networks by means of a fast-charging parking station with multiple points of delivery connected to different radial feeders. Regulating power flows at each point of delivery while the charging service is being provided, which means actively controlling power exchanges between radial distribution feeders can significantly increase the hosting capacity of the power system. Remarkable benefits are expected when the distribution networks to which the charging infrastructure is connected differ in terms of main characteristics, e.g., rated voltage level, end-user type and operating profiles, and the number and type of renewable plants. The paper focuses on technical targets, such as loss reduction and power quality in terms of admitted voltage deviation from the rated value. The power exchanges between distribution feeders are made possible by a controlled DC link, where bi-directional DC/DC converters are connected so as to charge or discharge vehicles according to the Vehicle-To-Grid approach. A multiplexer topology in which several vehicles can be alternatively connected to the same DC/DC converter is modeled. The proposed concept can contribute to network flexibility by controllably meshing distribution feeders and, jointly, by modulating charging processes according to assigned charging constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call