Abstract

High-quality crystalline micro- and nanostructures based on inorganic semiconductors including zinc oxide (ZnO) have attracted considerable interest in electronic and optoelectronic applications due to their outstanding properties. ZnO micro- and nanocrystals can be fabricated by the moderate and high throughput hydrothermal synthesis. Yet it is restricted by patterning large-area ZnO crystals with high-quality and programmable geometries through the hydrothermal process for the optoelectronic integration. Here, a capillary-bridge manipulation approach is demonstrated to control the dewetting process of ZnO precursor solution for patterning precursor arrays. Based on precursor arrays, vertically aligned high-quality ZnO microrod arrays with homogeneous morphology and pure crystallographic orientation are fabricated via a hydrothermal epitaxial method. Statistical results and crystallization theories guide the experimental optimization and discussion of the crystallization mechanism, dominated by the competition between homogeneous nucleation and heterogeneous nucleation. High-quality ZnO microbelt arrays are achieved through a surfactant-mediated hydrothermal method after ZnO microrod arrays are transferred to a polydimethylsiloxane substrate. Photodetectors based on ZnO microbelts exhibit a high responsivity of 2.3 × 104 A W-1 , a light on-off ratio exceeding 105 , and stable recyclability. It is anticipated that this work provides new insights into patterning inorganic high-quality micro- and nanostructures for multi-functional integrated devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call