Abstract

Networked three-dimensional (3D) nanoporous alumina nanostructures—consisting of vertical cylindrical stem pore arrays (170–310 nm in diameter) and periodical transverse branched pores (20–80 nm in diameter) interspaced regularly by 190–220 nm across the vertical pore walls—were controllably fabricated from low purity Al materials (99.0%, 99.3%, and 99.56%) by anodization in a phosphoric acidic solution at 110–190 V. The formation of transverse pores depended predominantly on the purity of the Al base materials and the corrosion resistance of the anodic porous alumina films, which can be mainly attributed to anodic and/or chemical dissolution of impurities such as Fe, Cu, Zn, Mg, and Mn incorporated in the Al base materials. Moreover, the effects of the purity of Al materials on the growth and morphology of porous alumina films in oxalic and sulfuric acid solutions were also investigated by a two-step anodization of Al sheets with different purities, namely 99.0%, 99.3%, 99.56%, and 99.999% Al. The alumina films grew more slowly in all electrolytes with decreasing Al purity, which can be attributed to the lower corrosion resistance of the PAA films containing small quantities of Fe oxides and/or hydroxides produced during anodization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.