Abstract
By electrodeposition and galvanic replacement reaction, we developed a facile, time-saving, cost-effective, and environmentally friendly, two-step synthesis route to obtain a controllable cobalt oxide/Au hierarchically nanostructured electrode for glucose sensing. The nanomaterials were characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, energy-dispersive spectrometry, and X-ray photoelectron spectroscopy, meanwhile, the sensing performance was investigated by cyclic voltammetry and amperometric response. The results revealed that this novel electrode exhibited excellent electrocatalytic performance toward glucose oxidation, with a wide double-linear range from 0.2 μM to 20 mM and a low detection limit of 0.1 μM based on a signal-to-noise ratio of 3, which was mainly attributed to the ability of loading a small amount of Au with good electron conductivity on the surface of cobalt oxide nanosheets with large active surface area and synergistic electrocatalytic activity of Au and cobalt oxide toward glucose electrooxidation. This facile, sensitive, and selective glucose sensor is also proven to be suitable for the detection of glucose in human serum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.