Abstract

A full micromagnetic model and a simplified one-dimensional analytical model are used to investigate the domain wall dynamics driven by an oblique magnetic field. Both models show that the Walker breakdown [N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974)] can occur at two distinct field strengths. However, the two models exhibit an important discrepancy due to the antivortex injection at the Walker field, which is not taken into account in the analytical model. The chirality of the domain wall is switched controllably when the field strength is in the range between the two Walker fields. The field window for controllable switching becomes broader with increasing oblique field angle or damping constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.