Abstract

Surface instabilities including wrinkles and buckle-delaminations are widespread in nature and can be found in a wide range of practical applications. Compared with the homogeneous wrinkle mode, the buckle-delaminations are spontaneously stress-localized, and their initiation positions and geometrical parameters are hardly precisely controlled by a simple method. Here, we report on the controllable buckle-delaminations in periodic thickness-gradient metal films on polydimethylsiloxane (PDMS) substrates by uniaxial mechanical compression. It is found that a periodic thickness-gradient film is spontaneously formed by masking a copper grid during deposition. The released mechanical strain tends to concentrate in thinner film regions, resulting in the restricted growth of buckle-delaminations. The geometrical features, evolutional behaviors, and underlying physical mechanisms of such buckle-delaminations are analyzed and discussed in detail based on the buckling model and finite element simulations. This work would provide a better understanding of the restricted buckle-delaminations in heterogeneous film-substrate systems and controllable fabrication of ordered structural arrays by copper grid masking and mechanical loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call