Abstract

Aerogels derived from the colloidal nanoparticles featured with hierarchical interconnected pore-rich networks guarantee their great potentials in various applications. Herein, the controllable assembly of three-dimensional aerogels based on Au nanoparticles (Au NPs) and reduced graphene oxide (rGO) nanosheets as building blocks via a bottom-up approach have been systematically clarified. The difference of building blocks and their assembly sequence were crucially to the final aerogel morphologies and electrochemical properties. Specifically, the highly porous graphene-gold dual aerogels (rGO-Au DAGs) with interconnected rGO nanosheets and Au nanowires showed high conductivity, large surface area and good biocompatibility. Thus, it was employed as an excellent matrix to immobilize enzyme for high-efficient bioelectrocatalysis. Taking bilirubin oxidase as an example, a more positive on-set potential (0.60 V) and a larger catalytic current density (0.77 mA cm−2@0.40 V) than those of other rGO-Au assemblies were achieved for direct bioelectrocatalytic O2 reduction. This study will provide an efficient strategy for unique dual-structural aerogels design and shed light to develop new functional materials for bioelectrocatalytic applications such as biosensors and biofuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call