Abstract
Micro/nanoscale diamond cutting tools used in ultra-precision machining can be fabricated by precision grinding, but it is hard to fabricate a tool with a nanometric cutting edge and complex configurations. High-precision geometry accuracy and special shapes for microcutting tools with sharp edges can be achieved by focused ion beam (FIB) milling. However, in the FIB milling process, the surface properties of the substrate (such as a diamond substrate) are affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedure. In this study, to reduce the diamond cutting tool edge sharpness and processing procedure, FIB milling beam current and tilting angle characteristics of single-crystal diamond were investigated, along with method for decreasing the FIB-induced damage on diamond tools by platinum (Pt) coating on the diamond substrate. Experimental results revealed that optimize beam current, tilting angle and platinum (Pt) coating could lead to relatively few processing procedure and sharp cutting tool edge. The obtained results are an endeavor to enhance the controllability of the diamond cutting tool FIB milling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have