Abstract

In this paper, we analyze the controllability properties under positivity constraints on the control or the state of a one-dimensional heat equation involving the fractional Laplacian $ (-d_x^{\,2})^{s}{} $ ($ 0<s<1 $) on the interval $ (-1,1) $. We prove the existence of a minimal (strictly positive) time $ T_{\rm min} $ such that the fractional heat dynamics can be controlled from any initial datum in $ L^2(-1,1) $ to a positive trajectory through the action of a positive control, when $ s>1/2 $. Moreover, we show that in this minimal time constrained controllability is achieved by means of a control that belongs to a certain space of Radon measures. We also give some numerical simulations that confirm our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.