Abstract

This study presents a new approach to determine the controllability and observability of a large scale nonlinear dynamic thermal system using graph-theory. The novelty of this method is in adapting graph theory for nonlinear class and establishing a graphic condition that describes the necessary and sufficient terms for a nonlinear class system to be controllable and observable, which equivalents to the analytical method of Lie algebra rank condition. The directed graph (digraph) is utilized to model the system, and the rule of its adaptation in nonlinear class is defined. Subsequently, necessary and sufficient terms to achieve controllability and observability condition are investigated through the structural property of a digraph called connectability. It will be shown that the connectability condition between input and states, as well as output and states of a nonlinear system are equivalent to Lie-algebra rank condition (LARC). This approach has been proven to be easier from a computational point of view and is thus found to be useful when dealing with a large system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.