Abstract

A fully operational multiterminal dc (MTDC) grid will play a strategic role for mainland ac systems interconnection and to integrate offshore wind farms. The importance of such infrastructure requires its compliance with fault ride through (FRT) capability in case of mainland ac faults. In order to provide FRT capability in MTDC grids, communication-free advanced control functionalities exploiting a set of local control rules at the converter stations and wind turbines are identified. The proposed control functionalities are responsible for mitigating the dc voltage rise effect resulting from the reduction of active power injection into onshore ac systems during grid faults. The proposed strategies envision a fast control of the wind turbine active power output as a function of the dc grid voltage rise and constitute alternative options in order to avoid the use of classical solutions based on the installation of chopper resistors in the MTDC grid. The feasibility and robustness of the proposed strategies are demonstrated and discussed in the paper under different circumstances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.