Abstract
This work proposes innovative feedback control schemes for a complex biorefinery plant which contains two continuous bioreactors: an anaerobic digester and a photobioreactor. The anaerobic digester is used to decompose organic matter inside a wastewater treatment process, the most useful final product being biogas/methane. The photobioreactor is used for a microalgae photosynthetic growth process where some components with added value are produced, and bio-mitigation of the carbon dioxide emissions is achieved. By using realistic models of the anaerobic digester and of the photobioreactor, novel adaptive and robust control schemes are designed. These proposed structures contain linearizing controllers, state observers and parameter estimators for the bioprocess unknown kinetics. The control designs are validated via numerical simulations that consider several realistic restrictions and disturbances which act on the process: unavailability of some biological variables, unknown and time-varying reaction kinetics, uncertain and time-varying influent flow rates, noisy measurements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have