Abstract

Laser surface hardening, is a process in which a shaped laser beam is scanned across the surface to produce a hard and wear-resistant surface on components. Compared with the conventional surface hardening process, the laser heat treatment offers a number of attractive characteristics such as minimal part distortion, self-quenching and the need for less finishing work. The challenge of laser hardening is the uneven surfaces found in molds such as those with sharp edges or holes. In these cases, due to the differences in the surrounding volume of the material, overheating problems often appear leading to unacceptable treatment results. The purpose of this paper is to present the new technology, “raio” developed by Talens System for laser hardening process. This technology is able to adapt to geometrical singularities of the components to be treated, ensuring the dimensions of the hardened area and hardness values are compliant with the requirements. The main features of the technology for laser hardening are validated on a set of samples of 1.2738 steel with representative discontinuities of molds. Mechanical and microstructural characterizations of the hardened cross sections confirm the advantages of the raio technology in regard to the quality compliance of the laser hardening process. Furthermore, raio offers the same advantages for other laser processes, like softening of critical area or laser cladding for repairing of damaged components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call