Abstract

SummaryThe objective of this paper is to develop performance‐based fault detection (FD) and fault‐tolerant control (FTC) schemes for a class of nonlinear systems. To this end, the representation forms of nonlinear systems with faults and the controller parameterization forms are studied first with the aid of the nonlinear factorization technique. Then, based on the stable kernel representation and the stable image representation of the faulty nonlinear system, the stability performance of the closed‐loop system is addressed, respectively. The so‐called fault‐tolerant margin is defined to evaluate the system fault‐tolerant ability. On this basis, two performance‐based FD schemes are developed aiming at detecting the system performance degradation caused by system faults. Furthermore, to recover the system stability performance, two performance‐based FTC strategies are proposed based on the information provided by the FD unit. In the end, a numerical example and a case study on the three‐tank system are given to demonstrate the proposed results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.