Abstract
In this paper, fault detection and fault-tolerant control strategies are proposed to handle the issues of both actuator faults and disturbances in a hexacopter. A dynamic model of a hexacopter is first derived to develop a model-based fault detection system. Secondly, the altitude control based on a sliding mode and disturbance observer is presented to tackle the disturbance issue. Then, a nonlinear Thau observer is applied to estimate the states of a hexacopter and to generate the residuals. Using a fault detection unit, the motor failure is isolated to address the one or two actuator faults. Finally, experimental results are tested on a DJI F550 hexacopter platform and Pixhawk2 flight controller to verify the effectiveness of the proposed approach. Unlike previous studies, this work can integrate fault detection and fault-tolerant control design as a single unit. Moreover, the developed fault detection and fault-tolerant control method can handle up to two actuator failures in presence of disturbances.
Highlights
The multicopter unmanned aerial vehicles (UAVs) are drawing attention in the academic community
The goal of this paper is to propose a fault detection and fault-tolerant control method for hexacopters in the presence of one or two actuator failures
The faults were injected by limiting the pulse width modulation (PWM)controller
Summary
The multicopter unmanned aerial vehicles (UAVs) are drawing attention in the academic community. The have been developed and tested in several technologies, such as formation flight [1,2], precision landing [3,4], tracking control [5,6], remote sensing [7,8,9,10]. This significant growth has resulted from the following advantages that UAVs have, such as agility, economical cost, compactness, mechanical simplicity, and ability to operate in indoor and outdoor environments [11]. The goal of this paper is to propose a fault detection and fault-tolerant control method for hexacopters in the presence of one or two actuator failures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.