Abstract

A characteristic feature in the immune response to many persistent viral infections is the dysfunction or deletion of antigen-specific T cells (exhaustion). This down-regulation of virus-specific T-cell response represents a critical control mechanism that exists within T-cell activation pathways to prevent lethal disease by inappropriate responses against disseminating virus infections. However, the molecular mechanisms by which the immune system determines whether to mount a full response to such infections remain largely unexplored. Here, we have established that in the murine lymphocytic choriomeningitis virus (LCMV) model, induction of the T-cell receptor signaling inhibitor molecule E3 ligase Cbl-b is critically involved in this decision. In particular, our data revealed that Cbl-b controls the program responsible for T-cell tolerance (exhaustion) induction during a chronic viral infection. Thus, Cbl-b(-/-) mice infected with a low dose of LCMV Docile mount a strong CD8(+) T-cell response that rapidly clears the infection, and the animals remain healthy; in contrast, down-regulation of the epitope-specific CD8(+) T-cell population in persistently infected Cbl-b(-/-) mice, compared to that in chronically infected B6 mice, was significantly delayed, and this was associated with increased morbidity and eventual death in nearly 20% of the animals. Interestingly, infection of Cbl-b(-/-) mice with a moderate virus dose resulted in rapid death with 100% mortality by 7 to 8 days after infection, caused by a dysregulated antiviral T-cell response, whereas the infected B6 mice survived and remained healthy. In conclusion, our results suggest that Cbl-b is critically involved in T-cell exhaustion and prevention of lethal disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call