Abstract
BackgroundTriple-negative breast cancer (TNBC) is an aggressive disease that currently lacks effective targeted therapy. NKG2D ligands (NKG2DLs) are expressed on various tumor types and immunosuppressive cells within tumor microenvironments, providing suitable targets for cancer therapy.MethodsWe applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human TNBCs. Lentiviral vectors were used to express the extracellular domain of human NKG2D that binds various NKG2DLs, fused to signaling domains derived from T cell receptor CD3 zeta alone or with CD27 or 4-1BB (CD137) costimulatory domain.ResultsInterleukin-2 (IL-2) promoted the expansion and self-enrichment of NKG2D-redirected CAR T cells in vitro. High CD25 expression on first-generation NKG2D CAR T cells was essential for the self-enrichment effect in the presence of IL-2, but not for CARs containing CD27 or 4-1BB domains. Importantly, self-enriched NKG2D CAR T cells effectively recognized and eliminated TNBC cell lines in vitro, and adoptive transfer of T cells expressing NKG2D CARs with CD27 or 4-1BB specifically enhanced NKG2D CAR surface expression, T cell persistence, and the regression of established MDA-MB-231 TNBC in vivo. NKG2D-z CAR T cells lacking costimulatory domains were less effective, highlighting the need for costimulatory signals.ConclusionsThese results demonstrate that CD27 or 4-1BB costimulated, self-enriched NKG2D CAR-redirected T cells mediate anti-tumor activity against TNBC tumor, which represent a promising immunotherapeutic approach to TNBC treatment.
Highlights
Triple-negative breast cancer (TNBC) is an aggressive disease that currently lacks effective targeted therapy
We examined the expression distribution of the individual NKG2D ligands (NKG2DLs) family members in TNBC cell lines by flow cytometry, using antibodies specific for MICA/B, or ULBP-1, ULBP-2/5/6, ULBP-3, or ULBP-4 (Fig. 1)
The expression of the ULBPs on TNBC cell lines varied: ULBP1 was only expressed on MDA-MB-468 at low levels, while ULBP-2/5/6 were more often strongly expressed in all TNBC cell lines except for BT549; ULBP-3 and 4 were only found on the MDA-453 and MDA-MB-231, respectively
Summary
Triple-negative breast cancer (TNBC) is an aggressive disease that currently lacks effective targeted therapy. NKG2D ligands (NKG2DLs) are expressed on various tumor types and immunosuppressive cells within tumor microenvironments, providing suitable targets for cancer therapy. Triple-negative breast cancers (TNBC), an aggressive form of breast cancer that lacks significant expression of the human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR), accounts for approximately 15~20% of invasive breast cancers. Cancer cells including TNBC cells frequently upregulate “stress” induced ligands recognized by the NK cell activating receptors NKG2D (natural-killer group 2, member D) and DNAM-1(CD226) [3, 4]. The adoptive transfer of NK cells may represent a promising treatment strategy for these cancers. The feasibility of targeting NKG2D ligands (NKG2DLs) utilizing chimeric antigen receptor (CAR) engineered T cell approach was
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have