Abstract

This research investigates different dielectric barrier discharge (DBD) actuator configurations for affecting tip leakage flow and suppressing stall inception. Computational investigations were performed on a low speed rotor with a highly loaded tip region that was responsible for stall-onset. The actuator was mounted on the casing upstream of the rotor leading edge. Plasma injection had a significant impact on the predicted tip-gap flow and improved stall margin. The effect of changing the actuator forcing direction on stall margin was also studied. The reduction in stalling flow was closely correlated with a reduction in loading parameter that quantifies mechanisms responsible for end-wall blockage generation. The actuation reduced end-wall losses by increasing the static pressure of tip-gap flow emerging from blade suction-side. Lastly, an approximate speed scaling developed for the DBD force helped estimate force requirements for stall margin enhancement of transonic rotors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call