Abstract

This research investigates different dielectric barrier discharge (DBD) actuator configurations for affecting tip leakage flow and suppressing stall inception. Computational investigations were performed on a low-speed rotor with a highly loaded tip region that was responsible for stall-onset. The actuator was mounted on the casing upstream of the rotor leading edge. Plasma injection had a significant impact on the predicted tip-gap flow and improved stall margin. The effect of changing the actuator forcing direction on stall margin was also studied. The improvement in stall margin was closely correlated with a reduction in loading parameter that quantifies mechanisms responsible for end-wall blockage generation. The actuation reduced end-wall losses by increasing the static pressure of tip-gap flow emerging from blade suction-side. Lastly, an approximate speed scaling developed for the DBD force helped estimate force requirements for stall enhancement of transonic rotors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.