Abstract
We use a relatively simple continuum model to investigate the effects of dielectric inhomogeneity within confined liquid-crystal cells. Specifically, we consider, in planar, cylindrical, and spherical geometries, the stability of a nematic-isotropic interface subject to an applied voltage when the nematic liquid crystal has a positive dielectric anisotropy. Depending on the magnitude of this voltage, the temperature, and the geometry of the cell, the nematic region may shrink until the material is completely isotropic within the cell, grow until the nematic phase fills the cell, or, in certain geometries, coexist with the isotropic phase. For planar geometry, no coexistence is found, but we are able to give analytical expressions for the critical voltage for an electric-field-induced phase transition as well as the critical wetting layer thickness for arbitrary applied voltage. In cells with cylindrical and spherical geometries, however, locally stable nematic-isotropic coexistence is predicted, the thickness of the nematic region being controllable by alteration of the applied voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.