Abstract
We review the influence of the magnetoelastic coupling with surface acoustic waves (SAWs) on the dynamic magnetic response of a periodic nanomagnet array. In addition to exciting the magnetization precession, an ultrafast laser pulse generates multiple SAW modes whose frequencies are determined by the array pitch. As a result, strong pinning of the magnetization precession frequency at the crossover points with the SAWs is observed over an extended field range. The complex spin wave spectrum can be analyzed in frequency and momentum spaces using finite element analysis emulating generation of SAWs. The magnetic response of the nanomagnets was then correctly reproduced with micromagnetic simulations taking into account additional magnetoelastic energy terms. This finding demonstrates control of the nanomagnet dynamics with the array geometry via magnetoelastic coupling, even when the magnetostatic interaction between the magnets is negligible.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have