Abstract

Amino- and epoxy-functionalized graphene oxide (GO) were synthesized separately through a wash-and-rebuild process utilizing two differently terminated silane coupling agents. The modified GO sheets were then incorporated into an epoxy resin to prepare nanocomposites. The addition of 0.2 wt% amino-functionalized GO (APTS-GO) yielded a 32% increase in Young's modulus (3.3 GPa) and 16% increase in tensile strength (81.2 MPa). Less reinforcement was observed with the epoxy-functionalized GO (GPTS-GO) but there was a more significant increase in ductility for GPTS-GO/epoxy, with the fracture toughness (critical intensity factor, KIC) and fracture energy (critical strain energy release rate, GIC) nearly doubling at 0.2 wt% loading (1.46 MPam1/2 and 0.62 kJ/m2 for KIC and GIC, respectively). Raman spectroscopy measurements revealed that the GPTS-GO was dispersed more uniformly than the APTS-GO in the epoxy matrix, and better interfacial stress transfer was found for the APTS-GO. Thus the wash-and-rebuild process affords a novel strategy for controlling the functionality of graphene in the quest to develop high-performance graphene-based nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call