Abstract

We study the possibility of controlling the finite size corrections in exact diagonalization studies quantitatively. We consider the one- and two dimensional Hubbard model. We show that the finite-size corrections can be be reduced systematically by a grand-canonical integration over boundary conditions. We find, in general, an improvement of one order of magnitude with respect to studies with periodic boundary conditions only. We present results for ground-state properties of the 2D Hubbard model and an evaluation of the specific heat for the 1D and 2D Hubbard model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call