Abstract

This paper shows the possibility of active control of the drag on a spacecraft in the Earth's ionosphere using the electromagnetic force produced by the interaction of the spacecraft's magnetic field with the incident plasma flow. As a result of experimental simulation of the dynamic interaction of the magnetic field of a sphere with a hypersonic flow of the rarefied ionospheric plasma, the sphere drag coefficient is determined as a function of the ratio of the magnetic pressure to the dynamic pressure in a wide range of the angle between the incident flow velocity and the magnetic field and the angle between the incident hypersonic plasma flow and the velocity of a subsonic plasma jet injected from the sphere surface. It is shown that injecting a subsonic plasma jet into the mini-magnetosphere cavity provides a several-fold increase in the drag coefficient of a “magnetized” sphere (a sphere with its own magnetic field) in a hypersonic rarefied plasma flow in comparison with a “nonmagnetized” sphere. A 0.6 … 0.8 T magnetic field of a “magnetized” body may be an efficient means for its deorbiting through increasing the drag on the body in the Earth's ionosphere, which provides a way for removing space debris objects to lower orbits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call