Abstract

The dynamic interaction of a “magnetized” sphere (a sphere with a magnetic field source) with a hypersonic rarefied plasma flow was studied experimentally to model the interaction of a “magnetized” spacecraft with the ionospheric plasma. The experiments were conducted at the plasma flow velocity parallel and normal to the sphere's magnetic field. The electromagnetic drag coefficient was determined as a function of the ratio of the magnetic pressure to the dynamic pressure and the ratio of the mini-magnetosphere dimension to the spacecraft dimension (sphere radius). It was shown that a spacecraft's magnetic field of about 0.8–1.5 T produces an electromagnetic drag comparable with the drag produced using ion beam technologies of space debris removal, which require dedicated spacecraft with plasma accelerators. Energy-efficient compact sources of a 0.8–1.5 Т magnetic field for space debris objects may be made using special arrangements of small-size permanent magnets – Halbach arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.