Abstract

The E×B drift motion of charged test particle dynamics in the Scrape-Off-Layer (SOL) is analyzed to investigate a transport control strategy based on Hamiltonian dynamics. We model SOL turbulence using a 2D non-linear fluid code based on interchange instability which was found to exhibit intermittent dynamics of the particle flux. The effect of a small and appropriate modification of the turbulent electric potential is studied with respect to the chaotic diffusion of test particle dynamics. Over a significant range in the magnitude of the turbulent electrostatic field, a three-fold reduction of the test particle diffusion coefficient is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.