Abstract

The calcium carbonate hexahydrate mineral ikaite (CaCO3⋅6 H2O) has been documented in aquatic environments at near-freezing temperatures. An increase of the prevailing temperature in the depositional environment, results in the transformation of natural ikaite into less soluble calcium carbonate phases occasionally leaving calcite pseudomorphs in the sediments, which are considered asan indicator for primary cold water temperatures. Detailed understanding on the physicochemical parameters controlling ikaite (trans-)formation however, such as temperature and reactive solution chemical composition, are still under debate. In order to study the formation of ikaite, we conducted precipitation experiments under controlled physicochemical conditions (pH = 8.3±0.1; T=6, 12, and 18±0.1°C) at defined aqueous molar Mg/Ca ratios. The transformation of ikaite into anhydrous calcium carbonate polymorphs was investigated in solution and at air exposure. The obtained results reveal the formation of ikaite at temperatures up to 12°C, whereas Mg-rich amorphous calcium carbonate precipitated at 18°C. In contact with the reactive solution ikaite transformed into aragonite at aqueous molar Mg2+/Ca2+ ratios of ≥14. In contrast, ikaite separated from the Mg-rich solution and exposed to air transformed in all cases into calcite/vaterite. The herein obtained temperature limit of ≤12 for ikaite formation is significantly higher than formerly expected and most probably caused by (i) the high saturation degree of the solution with respect to ikaite and (ii) the slow dehydration of the aqueous Ca2+ ion at low temperatures. This result questions the suitability of calcite pseudomorphs (i.e. glendonites) as a proxy for near-freezing temperatures. Moreover, our findings show that the CaCO3 polymorph formed from ikaite is strongly controlled by the physicochemical conditions, such as aqueous molar Mg2+/Ca2+ ratio of the reactive fluid and H2O availability throughout the transformation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.