Abstract

Caving mining method could lead to massive waste rocks hauled to surface while leaving a large void in underground. This would eventually result in the surface subsidence and damage to the environment and surface infrastructures. In this study, we proposed three different backfilling methodologies to minimise the surface subsidence being 1) 100 % mining and 100 % backfilling (method 1); 2) leaving one slice of coal between two backfilled slices (method 2) and 3) leaving one slice of coal between one backfilled slice (method 3). The backfilling materials are made of waste rock, fly ash and cement and the optimal ratio has been found through the test program designed based on the orthogonal experiment design method. The strength of the backfilling paste is 3.22 MPa at the axial strain 0.033. The mine scale numerical simulation has also been conducted and it was concluded that the method 1 would lead to 0.098 m roof deformation in underground roadway whereas the method 2 and method 3 only induced a roof deformation around 32.7 % and 17.3 % of that induced by the method 1, respectively. All three methodologies have been approved to minimise the roof deformation and disturbance to the rock by mining operations. At last, the surface subsidence has been scientifically evaluated based on the probability integration method of surface movement. It indicated that the surface subsidence, horizontal movement, inclined movement and curvature of rock surrounding the panel void were all below the minimum value required by regulation. This confirmed that the selected backfilling mining is able to ensure the integrity of the surface infrastructures. This technology provides a new way to control the surface subsidence caused by coal mining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call