Abstract

Activated carbon adsorption has been considered the most efficient technology toward VOC removal. The waste biomass as alternates solved the problems of high price and nonrenewable of traditional raw materials. The waste Zanthoxylum bungeanum branches were firstly selected as raw materials to prepare activated carbons. Interestingly, the pore structure and surface chemistry can be successfully controlled by adjusting the heating rate. The hierarchical porous carbons exhibited great potential for toluene adsorption. The micro-mesopore structure possessed unique spatial effect; micropores played a dominant role in adsorption process, especially narrow micropores (pore size ≤ 1.0 nm) emerged stronger adsorptive force toward toluene molecules due to overlapping attractive forces from neighboring pore walls. And mesopores not only displayed excellent transport diffusion but also provided adsorption sites. Additionally, the high graphitization degree enhanced the interaction between graphene layer equipped electron-rich regions and π-electrons on the aromatic ring by the π-π conjugated effect. The hydroxyl and carbonyl functional groups served as chemisorption sites and led to higher adsorption amounts. Fortunately, the regeneration can be achieved by thermal treatment at the low temperature (≤ 150 °C) or even gas purging at room temperature (20 °C), which avoided an explosion accident in the process of high-temperature regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.