Abstract

Gate oxide damage resulting from high density plasma chemical vapor deposition of silicon oxide was investigated using damage sensitive antenna structures with area ratios up to 200,000:1. Significant damage was detected from an unoptimized oxide deposition process. A 24−1 fractional factorial experimental design was used to screen the effect of four parameters: radio frequency power, microwave power, electrostatic chuck potential, and magnetic field. RF power and electrostatic chuck potential made no contribution to oxide degradation. The main factor was microwave power, and further experiments with microwave power ranging from 1500 to 2500 W showed that gate charging damage increased with microwave power, with the extent and distribution of damage depending on the magnetic field shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.