Abstract

In this work, we study the near-field radiative heat transfer between two suspended sheets of anisotropic 2D materials. It is found that the radiative heat transfer can be enhanced with orders-of-magnitude over the blackbody limit for nanoscale separation. The enhancement is attributed to the excitation of anisotropic and hyperbolic plasmonic modes. Meanwhile, a large thermal modulation effect, depending on the twisted angle of principal axes between the upper and bottom sheets of anisotropic 2D materials, is revealed. The near-field radiative heat transfer for different concentrations of electron is demonstrated and the role of hyperbolic plasmonic modes is analyzed. Our finding of radiative heat transfer between anisotropic 2D materials may find promising applications in thermal nano-devices, such as non-contact thermal modulators, thermal lithography, thermos-photovoltaics, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.