Abstract

A method is presented for controlling the persistence of a local attractor near a grazing periodic trajectory in a piecewise smooth dynamical system in the presence of discontinuous jumps in the state associated with intersections with system discontinuities. In particular, it is shown that a discrete, linear feedback strategy may be employed to retain the existence of an attractor near the grazing trajectory, such that the deviation of the attractor from the grazing trajectory goes to zero as the system parameters approach those corresponding to grazing contact. The implementation relies on a local analysis of the near-grazing dynamics using the concept of discontinuity mappings. Numerical results are presented for a linear and a nonlinear oscillator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.