Abstract

Multistability has been a phenomenon of continuous interest in nonlinear dynamics. Most existing works so far have focused on smooth dynamical systems. Motivated by the fact that nonsmooth dynamical systems can arise commonly in realistic physical and engineering applications such as impact oscillators and switching electronic circuits, we investigate multistability in such systems. In particular, we consider a generic class of piecewise smooth dynamical systems expressed in normal form but representative of nonsmooth systems in realistic situations, and focus on the weakly dissipative regime and the Hamiltonian limit. We find that, as the Hamiltonian limit is approached, periodic attractors can be generated through a series of saddle-node bifurcations. A striking phenomenon is that the periods of the newly created attractors follow an arithmetic sequence. This has no counterpart in smooth dynamical systems. We provide physical analyses, numerical computations, and rigorous mathematical arguments to substantiate the finding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.