Abstract

To prevent marine macrofouling, the anti-fouling effect of liquid discharge on mussels Mytilus galloprovincialis Lamarck was investigated in a simulated water-cooling system. The effects of input energy, mussel distance from discharge center, continuous discharge time, and discharge energy distribution mode on mussel response (death or detachment) were systematically studied. The results showed that excellent anti-fouling effects could be achieved by increasing input energy, but the detachment rate and mortality of mussels decreased sharply when the mussels were farther away from the discharge center. Low frequency discharge for a long, continuous time and multiple stimuli at long intervals improved the anti-fouling effect. Shock waves are the most likely cause of mussel eradication, and the threshold values of peak pressure to prevent mussel settlement and to cause death were 0.02 MPa and 0.05 MPa, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call