Abstract

Controlled cracking at micro/mesoscale is crucial for decreasing the strength scatter and improving the reliability of carbon/carbon composites (C/Cs). In this work, the controlled cracking is realized by a designed interlaminar residual thermal stress (RTS), which is introduced inside the C/Cs by the alternate stacking of two types of C/C plies with different coefficients of thermal expansion. Firstly, multiscale finite element (FE) modeling is performed to capture the interlaminar RTS induced by the alternate stacking and evaluate the risk of delamination due to the free edge effect. Secondly, mechanisms responsible for the controlled cracking are elaborated with the aid of the FE modeling and experimental characterizations, and the controlled deflections and bifurcations of the crack strongly shield the influence of multiscale flaws. Finally, by adopting this strategy, the flexural strength of the C/Cs increases by 66% while the statistical Weibull modulus also increases from 4.9 to 8.3, verifying the simultaneously improved strength and reliability of the C/Cs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.