Abstract

The transcription factor GATA-1 and its cofactor FOG-1 are essential for the normal development of erythroid cells and megakaryocytes. FOG-1 can stimulate or inhibit GATA-1 activity depending on cell and promoter context. How the GATA-1-FOG-1 complex controls the expression of distinct sets of gene in megakaryocytes and erythroid cells is not understood. Here, we examine the molecular basis for the megakaryocyte-restricted activation of the alphaIIb gene. FOG-1 stimulates GATA-1-dependent alphaIIb gene expression in a manner that requires their direct physical interaction. Transcriptional output by the GATA-1-FOG-1 complex is determined by the hematopoietic Ets protein Fli-1 that binds to an adjacent Ets element. Chromatin immunoprecipitation experiments show that GATA-1, FOG-1 and Fli-1 co-occupy the alphaIIb promoter in vivo. Expression of several additional megakaryocyte-specific genes that bear tandem GATA and Ets elements in their promoters also depends on the physical interaction between GATA-1 and FOG-1. Our studies define a molecular context for transcriptional activation by GATA-1 and FOG-1, and may explain the occurrence of tandem GATA and Ets elements in the promoters of numerous megakaryocyte-expressed genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call