Abstract
The herpes simplex virus type 1 VP16 polypeptide is a potent trans-activator of viral gene expression. We have tested the ability of the VP16 activation domain to activate gene expression in plant cells. A plasmid encoding a translational fusion between the full-length 434 repressor and the C-terminal 80 amino acids of VP16, was constructed. When expressed in Escherichia coli, the chimeric protein binds efficiently to 434-binding motifs (operators). For expression in plant cells, the chimeric activator gene was placed between the cauliflower mosaic virus (CaMV) 35S promoter and nos terminator sequences in a pUC-based plasmid. The 434 operators were placed upstream of a minimal CaMV 35S promoter linked to the E. coli gus reporter gene. This reporter-expression cassette was then incorporated into the same plasmid as the 434 cI/VP16 activator-expression cassette. Two control plasmids were also constructed, one encoding the 434 protein with no activator domain and the second a chimeric activator with no DNA-binding domain. The chimeric activator was tested for its ability to activate gene expression in a tobacco protoplast transient assay system. Results are presented to show that we can obtain in plant cells significant activation of gene expression that is dependent on both DNA-binding and the presence of the activator domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.