Abstract
PAL5, a tomato (Lycopersicon esculentum Mill.) plant defense gene that encodes phenylalanine ammonia-lyase, is known to respond to a variety of environmental stresses including pathogen infection and wounding. A shiva-1 gene recombinant that encodes a small synthetic antibacterial peptide under the PAL5 gene promoter was transformed into potato (Solanum tuberosum L.) and its ability to induce resistance to Erwinia carotovora was compared with a construct under the control of the constitutive and widely used cauliflower mosaic virus (CaMV) 35S promoter. The shiva-1 peptide, an analog of natural cecropin B, was shown previously to have high bactericidal activity in vitro, but when expressed in vivo under the control of the CaMV 35S promoter, the effects were very inconsistent. As observed previously, in the present studies a few transformants with the CaMV 35S promoter were highly resistant when assayed for susceptibility to soft rot disease. In marked contrast the majority of transformants with the PAL5 gene promoter were highly resistant. More-detailed analyses of the incorporated DNA indicated that most of the transformants with the CaMV 35S promoter contained multiple copies of the transforming DNA while all of the PAL5 recombinants contained single copies. The highly resistant CaMV 35S recombinant also was present as a single copy. The results indicate that, at least in this instance, a constitutive promoter may not be ideal for the effective expression of a foreign gene and suggest that multiple insertions may have negative consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.