Abstract

For self‐assembling of TiO2 nanoparticles in multiple layers by layer‐by‐layer deposition to be applied to TiO2 thin films with defined and homogeneous thickness for large‐scale applications, the proper functionalization of substrate surface is a prerequisite to guarantee sufficient adhesion. The substrates selected and tested in the present paper were conductive, fluorine‐doped tin oxide (FTO) glass, nonconductive silica glass, and titanium alloy. The current study focusses on the analytical control of the stepwise functionalization of the substrates with 3‐aminopropyltriethoxysilane and glutaraldehyde (GA) for both the FTO glass and silica glass and with 3‐aminepropyl phosphonic acid and GA for Ti alloy. The analyses have been conducted by means of surface sensitive methods, X‐ray photoelectron spectroscopy, Auger electron spectroscopy, and time‐of‐flight secondary ions mass spectrometry. Chemical composition of surface of functionalized substrates shows differences in the degree and type of modification in dependence on substrate. It could be demonstrated that the best functionalized substrates were the conductive FTO glasses. The analysis of the functionalized Ti substrates has revealed that the surface coverage with 3‐aminepropyl phosphonic acid and GA molecules is an inhomogeneous one, and further optimization of the two‐step functionalization on the Ti alloy substrate is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.