Abstract

We investigate the possibility of avoiding the escape of chaotic scattering trajectories in two-degree-of-freedom Hamiltonian systems. We develop a continuous control technique based on the introduction of coupling forces between the chaotic trajectories and some periodic orbits of the system. The main results are shown through numerical simulations, which confirm that all trajectories starting near the stable manifold of the chaotic saddle can be controlled. We also show that it is possible to jump between different unstable periodic orbits until reaching a stable periodic orbit belonging to a Kolmogorov-Arnold-Moser island.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.