Abstract

This paper introduces a two-step procedure for stabilising a chaotic system around an arbitrary periodic orbit in a Poincaré map. The periodic orbit may be a period-n orbit traversing the Poincaré plane an integer n times before completing the periodic cycle. The order of traversing can also be chosen arbitrarily. Chaotic systems lack predictability due to positive Lyapunov exponents. For this reason, predictive control methods tend to perform poorly because the predictable horizon may be short. Current methods for stabilising chaotic systems work by controlling existing unstable periodic orbits. This paper proposes a method for stabilising the system on an arbitrary point in the Poincaré section. The method in this paper consists of two steps. In the first step, we pose an optimisation problem that computes an input signal that introduces a desired unstable or stable periodic orbit. In the second step, we use existing methods, such as the method using delay coordinate embedding developed by Ott, Grebogi and Yorke in 1990, to stabilise the system around the newly introduced periodic orbit. As an example, we demonstrate the method on the resistively and capacitively shunted driven Josephson junction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.